
J. Fluid Mech. (2001), vol. 441, pp. 119–138. Printed in the United Kingdom

c© 2001 Cambridge University Press

119

On the modelling of the subgrid-scale
and filtered-scale stress tensors

in large-eddy simulation

By D A N I E L E C A R A T I1, G R É G O I R E S. W I N C K E L M A N S2
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The large-eddy simulation (LES) equations are obtained from the application of
two operators to the Navier–Stokes equations: a smooth filter and a discretization
operator. The introduction ab initio of the discretization influences the structure of
the unknown stress in the LES equations, which now contain a subgrid-scale stress
tensor mainly due to discretization, and a filtered-scale stress tensor mainly due to
filtering. Theoretical arguments are proposed supporting eddy viscosity models for
the subgrid-scale stress tensor. However, no exact result can be derived for this term
because the discretization is responsible for a loss of information and because its
exact nature is usually unknown. The situation is different for the filtered-scale stress
tensor for which an exact expansion in terms of the large-scale velocity and its
derivatives is derived for a wide class of filters including the Gaussian, the tophat and
all discrete filters. As a consequence of this generalized result, the filtered-scale stress
tensor is shown to be invariant under the change of sign of the large-scale velocity.
This implies that the filtered-scale stress tensor should lead to reversible dynamics
in the limit of zero molecular viscosity when the discretization effects are neglected.
Numerical results that illustrate this effect are presented together with a discussion
on other approaches leading to reversible dynamics like the scale similarity based
models and, surprisingly, the dynamic procedure.

1. Introduction
The large-scale velocity field ūi described by a large-eddy simulation (LES) is

usually regarded as the convolution between the velocity ui and a filter that smooths
the high wavenumber (i.e. short wavelength) structures (Leonard 1974):

ūi(x) =

∫
Gr(x− y) ui(y) dy, (1.1)

where Gr represents the filter kernel in real space (G will be used for the filter kernel
in wave space). For an incompressible flow, the LES equations based on the filter Gr
read:

∂tūi + ∂j(ūj ūi) = −∂jτij − ∂ip̄+ ν∇2ūi, (1.2)

where ν is the molecular viscosity, p is the pressure and τij = uiuj − ūiūj is an
additional stress that is not expressed in terms of the filtered velocity. It will be
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represented here as the commutator between the operators ‘product’ and ‘filtering’,
acting on the complete velocity ui. We do not consider here possible commutation
errors between the filtering and the derivation operators. Although these effects might
be important in some cases, their inclusion in the present work would obfuscate some
of the results we want to stress. The description given by (1.2) is, however, only
an ideal picture of the LES since the filtered velocity field defined by (1.1) cannot,
for most filters, be represented on a numerical grid without further approximation
(representing discretization errors). The necessary discretization procedure required
for solving the LES equations can thus be seen as an additional operator D applied
to the filtered equation (1.2). The quantity predicted by the discrete LES equations is
thus:

˜̄ui = D[ūi]. (1.3)

The exact nature of the operator D is usually unknown. For numerical schemes
using a basis of orthogonal functions, such as the Fourier waves or the Chebyshev
polynomials, D is simply a projector into a finite subset of these functions. However,
for finite-difference schemes, the operator D is not clearly defined. In the following,
we will systematically assume that the filtering and the discretization operations are
commutative (˜̄ui = ¯̃ui). The LES equations that are actually computed thus correspond
to:

∂t˜̄ui + ∂j
˜̄̃uj ˜̄ui = −∂jT̃ij − ∂i˜̄p+ ν∇2˜̄ui, (1.4)

where the stress to be modelled is given by the discretized version ofTij = uiuj− ˜̄ui˜̄uj .
We have deliberately written the nonlinear term as the application of the operator
D on the product ˜̄uj ˜̄ui since we assume that all the terms in the LES equations are
discretized in the same way. For a pseudospectral code, this amounts to assuming
that the code is de-aliased.

Clearly, the total LES stressTij takes its origin from two different ranges of velocity
scales. First, Tij depends on the scales that are outside the resolution domain of the
LES. It thus has an explicit subgrid-scale dependence. Secondly, Tij also depends on
the difference between the exact velocity field and the filtered velocity field inside the
resolution domain of the LES. Hence, it also has a resolved filtered-scale dependence.
In § 2, the total LES stress Tij is decomposed into two terms closely related to these
two different dependences. An exact expansion is derived for the filtered-scale stress
tensor in § 3. Phenomenological and numerical arguments are proposed in § 4 that
support the modelling of the subgrid-scale stress by an eddy viscosity term. Examples
of filtered-scale stress tensors obtained for classical filters are presented in § 5 and the
convergence of the expansion is discussed in § 6. As a consequence of the expansion
for the filtered-scale stress tensor, it is shown that this tensor cannot be responsible for
any irreversible effect in the LES dynamics. This important property is discussed in
detail in § 7 and existing models with this property are discussed in § 8. In particular,
the dynamic procedure, a recently developed method for calibrating filtered-scale
models, is proved to systematically produce reversible models. To our knowledge, this
fundamental property of the dynamic procedure has not been widely recognized so far.

2. Filtered-versus subgrid-scale stress tensors
The stress Tij can be decomposed into two terms:

Tij ≡ uiuj − ¯̃ui¯̃uj = (uiuj − ũiũj)︸ ︷︷ ︸
Aij

+ (ũiũj − ¯̃ui¯̃uj)︸ ︷︷ ︸
Bij

. (2.1)
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Figure 1. Effect of the discretization and of the filtering on a typical turbulent energy spectrum.
For simplicity, the discretization is here represented as a sharp Fourier cutoff.

The decomposition (2.1) shows that the total stress contains two terms of very
different nature. The first term is obtained by applying the filtering operation to the
tensor Aij = uiuj − ũiũj , which represents the difference between the total nonlinear
term and the nonlinear term that can be captured on the grid. The second term is
closer to the classical stress appearing in the LES equation. It is the commutator
between the operators ‘product’ and ‘filtering’, acting on the discretized velocity
ũi: Bij = ũiũj − ¯̃ui¯̃uj . These two terms can be rewritten as follows

Aij = uCi u
C
j + (uCi u

A
j + uAi u

C
j ) + (uCi u

B
j + uBi u

C
j ), (2.2)

Bij = (uAi + uBi )(uAj + uBj )− uAi uAj , (2.3)

where the total velocity ui = uAi + uBi + uCi has been decomposed into three parts. The
first term uAi = ˜̄ui is the LES field that is resolved in an actual simulation, whereas
uBi = ũi − ˜̄ui is the difference between the total and the LES velocity fields within the
numerical domain of the LES. Finally, the remainder uCi = ui − ũi corresponds to
scales that are beyond the resolution limit of the scheme used for solving the LES
equations numerically. The respective spectral domains of these three contributions
to the total velocity are shown in figure 1.

We investigate the important limits obtained when one of the operators G or D
reduces to the unity operator U. The first case, G → U can be interpreted as the
DNS limit since no filter is applied to the Navier–Stokes equations. The following
properties are derived straightforwardly from the decomposition of ui:

lim
G→U u

B
i = 0 ∀D, (2.4)

lim
G→UBij = 0 ∀D. (2.5)

Hence, Bij vanishes for a DNS (when no filtering is applied), independently of the
discretization scheme D used for solving the equations. This tensor is thus mainly
generated by the filtering operator and, accordingly, it will be called filtered-scale
stress tensor. The second limit, D → U, corresponds to a simulation with an infinite
resolution. Again, the following properties are derived straightforwardly from the
decomposition of ui:

limD→U u
C
i = 0 ∀G, (2.6)
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limD→UAij = 0 ∀G. (2.7)

Clearly, Aij vanishes for an infinite resolution, independently of the filter G. Its
origin is thus mainly in the discretization procedure. Hence, Aij corresponds to a
subgrid-scale stress tensor.

The terminology adopted here is purposely not the classical one. In the LES liter-
ature, the tensor Bij is usually called the subgrid-scale stress tensor. This has caused
some confusion since the filtering and the discretization are rarely distinguished. In
this work, mathematical and physical motivations will be given for a different mod-
elling of the two contributions to Tij . In particular, in § 3 it is shown that, for a
wide class of filters, an exact expansion of the second term Bij in terms of spatial
derivatives of uAi = ˜̄ui can be obtained. As a consequence, there is no closure problem
related to this term which can be expressed as Bij = Bij[˜̄u]. Moreover, the resulting
expression for Bij has the following property:

Bij(˜̄ul) = Bij(−˜̄ul). (2.8)

Hence, Bij is invariant under the change of sign of the resolved LES velocity ˜̄ui.

3. Exact expansion for the filtered-scale stress tensor
In the LES literature, the unknown stress tensor is usually supposed to represent the

effects of the filter G only, while the discretization effects are not taken into account
explicitly. Such a viewpoint amounts to considering the limit (2.7). However, adopting
this limit is not a prerequisite to the derivation of exact results for the filtered-scale
stress tensor. The main purpose of this section is to show that Bij can be expressed,
in many cases, in terms of ˜̄ui without the need for any models and independently of
the nature of the discretization operator D.

Before proving that there is no closure problem related to the filtered-scale stress
tensor, this property can be easily understood from the expression (2.3). Indeed, Bij

is independent of the unresolved velocity uCi . Moreover, if the filtering operator is
invertible inside the resolution domain of the LES, then uBi can be expressed in terms
of uAi only. As a consequence, under some constraints on the filter G, Bij should be a
function of the LES velocity ˜̄ui = uAi only, and no closure problem should arise from
this term.

3.1. Known results: the Gaussian filter

Yeo (1987) – see also Yeo & Bedford (1988) – and Leonard (1997) have both re-
cently and independently derived an expression for the filtered-scale stress in the
case of Gaussian filters. Consider first the one-dimensional Gaussian filter given by
∆Gr(x) = exp (−x2/2∆2)/

√
2π and G(k) = exp (−k2∆2/2). They have shown that, for

any function a and b, the filtered-scale stress can be expressed only in terms of the
spatial derivatives of the filtered functions a and b:

ab− ā b̄ =

∞∑
n=1

∆2n

n!
∂nxā ∂

n
xb̄. (3.1)

The extension to the three-dimensional Gaussian filter is easily obtained and can be
used for determining Bij:

Bij = ∆2 ∂k˜̄ui ∂k˜̄uj +
∆4

2!
∂2
kl

˜̄ui ∂
2
kl

˜̄uj +
∆6

3!
∂3
klm

˜̄ui ∂
3
klm

˜̄uj + · · · , (3.2)
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where we assume summation over the repeated indices. This result can also be
extended to an anisotropic three-dimensional Gaussian filter with ∆1 6= ∆2 6= ∆3:

Bij =
∑
k

∆2
k ∂k˜̄ui ∂k˜̄uj +

∑
kl

∆2
k∆

2
l

2!
∂2
kl

˜̄ui ∂
2
kl

˜̄uj +
∑
klm

∆2
k∆

2
l ∆

2
m

3!
∂3
klm

˜̄ui ∂
3
klm

˜̄uj + · · · . (3.3)

In some sense, the expansion (3.1) gives the exact model LES practitioners have
always been looking for. Obviously, this model is not directly implementable since it
requires the evaluation of an infinite number of terms. Moreover, in the realistic case
where the LES is performed with a limited resolution, only a few spatial derivatives
can be computed with confidence starting from an actual LES field. Nevertheless, this
result is very important since it shows that, for LES based on the Gaussian filter, a
mathematical expression can be derived for the filtered-scale stress tensor Bij . In the
following section, we extend this result to a wide class of filters.

3.2. General expansion for the filtered-scale stress tensor

We now show that the expansion (3.1) can be generalized for a wide class of filters.
In order to simplify the developments, only one-dimensional filters are considered in
the first step. Let us consider that the kernel of the filter defined by equation (1.1)
has a Fourier transform, G(k), which is C∞. This is true for most filters that are
defined in real space such as the Gaussian, the tophat and all the discrete filters
[Gr(x) =

∑
i δ(x − xi)]. In addition, we introduce two fields a(x) and b(x) for which

the Fourier transform is assumed to exist. The first part of this section proves that
there always exists a generalized expansion of the form:

ab =

∞∑
r,s=0

crs ∂
r
xā ∂

s
xb̄. (3.4)

It is then shown how to derive the coefficients crs from a generating function. The
proof consists of writing the assumed expansion in Fourier space:

G(k)

∫
dq a(q) b(k−q) =

∞∑
r,s=0

crs

∫
dq (iq)r G(q) a(q) (i(k−q))s G(k−q) b(k−q). (3.5)

Assuming that integration and summation commute, we have, on both sides of (3.5),
an expression of the type

∫
dq a(q) b(k − q)Z(q, k) where Z is a function of the

wavevectors k and q and of the Fourier transform of the filter. Since the expansion
should be true for any fields a and b, we have to prove the equality between the Z
terms. This leads to

G(k) =

∞∑
r,s=0

crs (iq)r (i(k − q))s G(q)G(k − q). (3.6)

We now introduce the function F[φ, ψ] defined by its double Taylor expansion
F[φ, ψ] =

∑
r,s crsφ

rψs. Using the change of variable q = −iφ, (k − q) = −iψ and
k = −i(φ + ψ), it is easy to verify that expansion (3.4) is valid if and only if it is
possible to define the real function F as

F[φ, ψ] =
G(−i(φ+ ψ))

G(−iφ)G(−iψ)
. (3.7)

This will always be true for symmetric filters (i.e. that are such that G(k) = G(−k))
since, in this case, F will be invariant under the change i → −i and thus F will be
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real. Hence, we conclude that, for all the symmetric filters, it is possible to derive
a generalized expansion (3.4). At this point, it is convenient to adopt the scaling
convention that the width of the filter is given by the following formula:

∆2 =

∫ +∞

−∞
x2 Gr(x) dx = −d2G

dk2

∣∣∣∣
k=0

. (3.8)

This expression assumes filters that have a well-defined and non-zero second moment
in real space. The leading terms in the multiple Taylor expansion of F[φ, ψ] are easily
obtained from (3.7) using the normalization property of the filter (G(0) = 1) and the
symmetry (G(−k) = G(k)):

F[φ, ψ] = 1− d2G

dk2

∣∣∣∣
k=0

φψ + · · · . (3.9)

The generalized expansion (3.4) thus always starts with:

ab− ā b̄ = ∆2 ∂xā ∂xb̄+ · · · . (3.10)

We stress that this result is valid for any symmetric filter with a well-defined second
moment in real space. Let us mention that filters with a vanishing second moment
have been recently considered (Vasilyev, Lund & Moin 1998) in the study of the
commutation error between the filtering and the differentiation. However, the most
commonly used filters do have a non-vanishing second moment. It is also interesting
to note that this proof of the existence of the generalized expansion gives a very simple
way to explicitly construct the series in (3.4). The Taylor coefficients of the function
F[φ, ψ] are simply the coefficients that appear in the expansion. Hence, F[φ, ψ] is the
generating function of the generalized expansion (3.4).

The case of three-dimensional filters is a direct generalization of the one-dimensional
filters. The generalized expansion for the filtered-scale stress tensor reads:

Bij =

∞∑
r1 ,s1=0

∞∑
r2 ,s2=0

∞∑
r3 ,s3=0

cr1r2r3s1s2s3 (∂r11 ∂
r2
2 ∂

r3
3

˜̄ui) (∂s11 ∂
s2
2 ∂

s3
3

˜̄uj), (3.11)

where ∂j represents the derivative with respect to xj . The coefficients cr1r2r3s1s2s3 are
obtained from the Taylor expansion of the function:

F[φ1, φ2, φ3, ψ1, ψ2, ψ3] =
G(−i(φ+ ψ))

G(−iφ)G(−iψ)
, (3.12)

where G is a function of a vector variable. Very often, three-dimensional filters are
taken as the product of three one-dimensional filters. In this case, the coefficients
factorize cr1r2r3s1s2s3 = c1

r1s1
c2
r2s2
c3
r3s3

and the parameters cjrj sj (j = 1, . . . , 3) are obtained
from the Taylor expansion of the function

Fj[φ, ψ] =
Gj(i(φ+ ψ))

Gj(iφ)Gj(iψ)
, (3.13)

where Gj(k) is the one-dimensional filter in the jth dimension. The particular case of
the three-dimensional Gaussian filter has already been given in (3.2).

We conclude this section by stressing that the result (3.11) is independent of the
discretization operator. Its validity clearly depends on the type of filter used in the
LES (which is here assumed to be symmetric and C∞). However, the combination of
the discretization and the filtering operator makes this condition not very restrictive.
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Examples and further discussion on the consequences of the expansion (3.11) will be
presented in §§ 4–6.

4. Modelling of the subgrid-scale stress tensor

So far, we have focused on the description of the filter-scale stress tensor. However,
in a practical LES, the subgrid-scale stress tensor cannot be neglected. Indeed, an
LES in which the subgrid-scale stress tensor is negligible contains as much infor-
mation as a DNS. Hence, we must conclude that any practical LES approach will
require some information loss. Since B̃ij can be expressed exactly as a function of
the resolved LES field independently of the discretization scheme D, the expected
information losses in an LES must have their origin in the subgrid-scale stress

tensor Ãij . This property is quite obvious when considering the expressions (2.2)
and (2.3). Indeed, the information losses are represented by the unresolved velocity

uCi which only appears in Ãij . Since the information contained in uC is not accessible

in an LES, there is no chance of reconstructing the term Ãij from a purely mathe-
matical analysis. Modelling is thus required for taking into account the subgrid-scale
stress.

The subgrid-scale tensor appears in the equation for uA and, following the expres-
sion (2.2), it will correspond to triad interaction with modes from {uA, uC, uC} for the
term AACC

ij ≡ uCi uCj , with modes from {uA, uA, uC} for the term AAAC
ij ≡ uCi uAj + uAi u

C
j

and with modes from {uA, uB, uC} for the termAABC
ij ≡ uCi uBj +uBi u

C
j . Although strictly

speaking uA and uB have the same spectral support, the effect of the filtering is such
that we can, as a first approximation, consider uA as the large-scale field and uB as the
intermediate-scale field (see figure 1). Therefore, AABC

ij could be regarded as a local

triad interaction, while AACC
ij and AAAC

ij correspond to non-local triad interactions.

If, for any reason, AABC
ij could be neglected, then the effective subgrid-scale stress

tensor Ãij would mainly correspond to interactions between uA and uC . In that case,
figure 2 indicates that, owing to the combined effects of the smooth filtering G and
of the discretization D, a scale separation might be created between the spectra of
uAi and uCi . This scale separation and the unavoidable information loss due to the

discretization would make plausible the modelling of the first two terms in Ãij by an
eddy viscosity term:

Ãij ≈ −2νe
˜̄Sij , (4.1)

where ˜̄Sij = 1
2
(∂iu

A
j + ∂ju

A
i ) is the filtered and discretized strain rate tensor. We

have performed some tests on DNS fields that show that AABC
ij is indeed small

under certain conditions. This does not mean that the dynamics of uA is entirely
dominated by the non-local interactions. Indeed, the filtered-scale stress tensor that
also enters the equation for uA uniquely corresponds to local triad interactions from
modes {uA, uA, uB} and is supposed to be taken into account thanks to the expansion
discussed in the previous section.

Our numerical tests have been carried out on a 2563 DNS of forced isotropic
turbulence. Two quantities have been used to determine whether the term AABC

ij is

negligible or not: the amplitude Q of AABC
ij normalized by the total amplitude of the

subgrid-scale stress and the fraction H of the subgrid-scale dissipation generated by



126 D. Carati, G. S. Winckelmans and H. Jeanmart
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Figure 2. The spectra corresponding to domains A and C show that some scale separation does
exist between the velocities u− ũ and ˜̄u.

DNS LES ∆ Q H
2563 243 0.00 0.00 0.00
2563 243 0.05 0.01 0.08
2563 243 0.10 0.10 0.23

2563 323 0.00 0.00 0.00
2563 323 0.05 0.02 0.14
2563 323 0.10 0.19 0.35

2563 483 0.00 0.00 0.00
2563 483 0.05 0.07 0.27
2563 483 0.10 0.36 0.48

Table 1. Comparison of the relative amplitude Q and dissipation H associated to the term AABC
ij

for various discretizations and various widths of the Gaussian filter.

this term. These quantities are defined by

Q ≡

∫
V

d3r ÃABC
ij ÃABC

ij∫
V

d3r Ãij Ãij

, (4.2)

H≡

∫
V

d3r ÃABC
ij

˜̄Sij∫
V

d3r Ãij
˜̄Sij

, (4.3)

and are reported in table 1. In the DNS, the forcing is acting in a fairly wide range
of wavevectors (2 < k < 10) in order to produce a field which is not decaying
too fast (otherwise uC is too small for reasonable a priori tests). Since our DNSs
are obtained with a fully de-aliased pseudospectral code, the natural choice for the
discretization operator is the sharp Fourier cutoff. Several levels of discretization have
been considered (from 243 to 483). The type of filter (Gaussian, tophat, . . .) appears to
have a very weak influence and we report results only for the Gaussian filter. On the
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DNS LES ∆ E[uC ]/E E[uA]/E Correlation

2563 243 0.00 0.30 0.70 0.224
2563 243 0.05 0.30 0.58 0.234
2563 243 0.10 0.30 0.37 0.256

2563 323 0.00 0.19 0.81 0.173
2563 323 0.05 0.19 0.64 0.181
2563 323 0.10 0.19 0.38 0.203

2563 483 0.00 0.08 0.92 0.128
2563 483 0.05 0.08 0.51 0.096
2563 483 0.10 0.08 0.38 0.094

Table 2. Correlation between the subgrid-scale stress tensor and the discretized and filtered strain
rate tensor. The filter is Gaussian. The discretization operator is systematically a sharp Fourier
cutoff. The ratio E[uC ]/E and E[uA]/E refer to the fraction of energy captured by uC and uA,
respectively.

contrary, the value of the filter width is shown to play a very important role. The value
of the filter width has been chosen so that the fraction of the energy captured by uA,
i.e. the actual LES field, is always larger than 35% of the DNS energy (this fraction
of captured energy by uA is reported in table 2). It appears clearly that, in most of
the cases, the term AABC

ij does not contribute to a large fraction of the amplitude
of the total subgrid-scale stress. The contribution of this term to the subgrid-scale
dissipation is, however, not always negligible. These results support, or at least do not

contradict, the theoretical arguments leading to the eddy viscosity model for Ãij . The

measure (reported in table 2) of the correlation between Ãij and ˜̄Sij using a priori
tests gives a more direct evaluation of the possible performance of the model (4.1).

According to the results of a priori tests of table 2, the modelling of the discretization

error (represented by Ãij) in terms of an eddy viscosity model might be a rather

crude approximation. The maximal correlation of Ãij with the strain rate tensor in
our DNS is indeed of the order of 0.25. Increasing the filter width should correspond
to a wider spectral gap between uA and uC . When uC contains a significant part of

the total energy, it appears that the correlation between Ãij and ˜̄Sij is increasing
with the spectral gap, supporting the idea that the eddy viscosity picture is somewhat
better justified in that case. However, for well-resolved LES (483), the correlation is
small and even decreases with the filter width.

As a conclusion of this section, the model for Ãij might be seen as the necessary
additional ingredient in the equation for ˜̄ui, the role of which is to ensure that the
numerical solution of this equation remains correctly captured on the grid. In this
case, adding a subgrid-scale viscosity probably corresponds to the simplest approach
without any pretension on modelling correctly the interaction between resolved and
unresolved scales. On the other hand, models based on the exact expansion for Bij will
provide an excellent approximation of the interactions between filtered and unfiltered
scales in the resolution domain of the LES. This discussion strongly motivates the use
of mixed models for the total effective stress T̃ij (see e.g. Vreman, Geurts & Kuerten
1996, 1997; Winckelmans et al. 1998, 2001; Leonard & Winckelmans 1999),

T̃ij ≈ ∆2(
˜

∂k˜̄ui ∂k˜̄uj)− 2νe
˜̄Sij , (4.4)
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which have already proved to be good candidates for modelling the effective stress
appearing in the LES equations.

5. Examples of exact expansions for the filtered-scale stress tensor
The explicit expression for the expansion (3.4) in the case of the Gaussian filter has

already been presented. We show here how this expansion is trivially derived from the
generating function F[φ, ψ] and extend this result to the tophat filter and to discrete
filters.

5.1. One-dimensional Gaussian filter

The one-dimensional Gaussian filter considered before satisfies the normalization
(3.8). It is an easy matter to show that the function F[φ, ψ] defined by (3.7) is
F[φ, ψ] = exp (φψ∆2). The proof of (3.1) is then straightforward. Since F is a function
of the product φψ only, its multiple Taylor series only has diagonal terms:

F[φ, ψ] =

∞∑
r=0

∆2r

r!
φrψr, (5.1)

and the expansion (3.4) reads:

ab =

∞∑
r=0

∆2r

r!
∂rxā ∂

r
xb̄. (5.2)

5.2. One-dimensional tophat filter

The one-dimensional tophat filter that follows normalization (3.8) is given in Fourier
space by G(k) = sin (

√
3k∆)/(

√
3k∆). Using the property sin (iφ) = i sinh (φ), and

expanding sinh (φ+ ψ) the function F simplifies to:

F[φ, ψ] = (coth (
√

3φ∆) + coth (
√

3ψ∆))

√
3∆φψ

φ+ ψ
. (5.3)

In this case, the general expression for the coefficient crs is not as simple as in the
case of the Gaussian. The leading terms in the expansion of F are obtained as:

F[φ, ψ] = 1 + ∆2φψ − ∆4

5
φψ(φ2 − ψφ+ ψ2) + · · · , (5.4)

and thus

ab− ā b̄ = ∆2 ∂xā ∂xb̄− ∆4

5
(∂3
xā ∂xb̄− ∂2

xā ∂
2
xb̄+ ∂xā ∂

3
xb̄) + · · · . (5.5)

5.3. One-dimensional first-neighbour discrete filters

We call ‘first-neighbour discrete filters’ filters that correspond to a local averaging of
the field using the first (grid) neighbours only. These can be defined in real space by a
sum of δ functions: Gr(x) = βδ(x) + (1− β)/2(δ(x+ d) + δ(x− d)) where d is the grid
spacing. In Fourier space, these filters are given by G(k) = β + (1 − β) cos (kd). The
width is thus obtained from the normalization (3.8) as ∆2 = (1−β)d2. The generating
function F is here obtained as

F[φ, ψ] =
β + (1− β) cosh ((φ+ ψ)d)

(β + (1− β) cosh (φd))(β + (1− β) cosh (ψd))
. (5.6)



Modelling of the subgrid-scale and filtered-scale stress tensors in LES 129

An interesting case arises for the choice β = 0. This is the case of the ‘arithmetical
mean’ filter: ā(x) = 1

2
(a(x + d) + a(x − d)) and G(k) = cos (kd). The function F then

simplifies into a product of functions of φ and ψ only:

F[φ, ψ] = 1 + tanh (φd) tanh (ψd), (5.7)

and the expansion (3.4) reads:

ab− ā b̄ =

( ∞∑
r=1

c̃r ∂
r
xā

)( ∞∑
r=1

c̃r ∂
r
xb̄

)
, (5.8)

where the coefficients c̃r are obtained from the Taylor series expansion of the function:

tanh (x) = x− x3

3
+ 2x5

15
− · · · .

Another interesting case is the choice β = 2
3
. This case corresponds to what LES

practitioners usually use as an ‘approximate way of applying the tophat filter using
grid values’. It has ∆2 = 4d2, and thus ∆ = 2d. It is easily obtained as the Simpson
quadrature for the integral:

ā(x) =
1

2d

∫ x+d

x−d
a(y) dy ≈ 2

3
a(x) + 1

6
(a(x+ d) + a(x− d)). (5.9)

6. Convergence of the expansion for the filtered-scale stress tensor
For simplicity of notation, we again focus the discussion on one-dimensional filters.

Before considering the convergence itself of the series (3.4), it is legitimate to first
investigate the possibility that this series degenerates into a finite summation. It would
be most interesting to find special filters that would lead to an expansion with only
a finite number of terms. Indeed, if such filters do exist, the exact Bij would be
accessible without the need to evaluate an infinite number of velocity derivatives.
Unfortunately, it is quite easy to show that such filters do not exist. Indeed, replacing
ψ by −φ in expression (3.7) leads to G(iφ) = (F[φ,−φ])−1/2 (here, we explicitly use
the fact that G is a symmetric filter). Replacing this expression in the relation defining
F , we obtain, after some simple algebraic manipulations,

F[φ, ψ]2 F[φ+ ψ,−φ− ψ] = F[φ,−φ]F[ψ,−ψ], (6.1)

which can never be satisfied if F is a polynomial of order n < ∞. Indeed, the order
of the polynomial on the right-hand side will be 2n while that on the left-hand side
will be 3n. We thus conclude that the generalized expansion (3.4) will always contain
an infinite number of terms.

The convergence of the series (3.4) is closely related to the convergence of the series
defining F[φ, ψ]. Since F is defined by the expression (3.7), the series

∑
rs crsφ

rψs clearly
converges to F[φ, ψ]. A very simple condition for the convergence of expansion (3.4)
can then be derived. Indeed, if it is possible to find two real positive numbers such
that ∣∣∣∣∂nā∂xn

∣∣∣∣ , ∣∣∣∣∂nb̄∂xn
∣∣∣∣ < αρn ∀n, (6.2)

then, the following inequality is satisfied∑
rs

crs ∂
r
xā ∂

s
xb̄ < α2

∑
rs

crsρ
r+s = α2F[ρ, ρ]. (6.3)
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Filtered vs.
K∆ DNS energy 1 term 2 terms 3 terms

8 0.53 0.61 0.80 0.89
6 0.66 0.73 0.88 0.94
4 0.81 0.84 0.94 0.98
3 0.88 0.90 0.97 0.99
2 0.94 0.95 0.99 1.00

Table 3. Correlation between the exact filtered-scale stress tensor and the truncated series (3.4) with
1, 2 and 3 terms. The 1283 DNS corresponds to forced isotropic turbulence, K = 64 is the maximal
DNS wavenumber and ∆ is the filter width. The filter is Gaussian.

Clearly, the inequalities (6.2) give minimal conditions for having a convergent expan-
sion. In the context of filtered-scale modelling, the parameter α is a velocity scale and
ρ is the inverse of a lengthscale. Here, it must be stressed that the evaluation of the
magnitude of |∂nūi/∂xn| is far from being obvious. At first sight, we could assume
that |∂nūi/∂xn| ∼ u∗/∆n where u∗ is some characteristic velocity scale. Indeed, such an
evaluation could be justified by that fact that ūi is a quantity that should only vary
on scale of the order of the filter width ∆. However, this analysis does not hold in
general for the derivatives of ūi. For example, considering the tophat filter, it is easily
proved that:

∂na(x)

∂xn
=

1

∆

(
∂n−1 a(x+ 1

2
∆)

∂xn−1
− ∂n−1 a(x− 1

2
∆)

∂xn−1

)
, (6.4)

and, consequently, there is little chance that |∂nūi/∂xn| behaves like u∗/∆n.
In the absence of a proof of the convergence for expansion (3.4) we have checked

numerically that the series converges for an actual turbulent velocity field. Using the a
priori testing technique, we have compared the correlation between the exact filtered-
scale stress tensor that can be derived from a DNS field and the model consisting
of only the first terms in the series (3.4). The DNS field is a 1283 simulation of
isotropic forced turbulence in a cubic box of length 2π. The largest wave vector is
thus K = 64. Results are summarized in table 3. Not surprisingly, the correlations
increase with the ratio between the filtered and the DNS energy. When the filtered
(not truncated) field captures about 50% of the DNS energy, the correlation between
the exact filtered-scale stress tensor and the first term only already reaches 0.61. This
correlation is larger than 0.90 when the filtered field captures more than 90% of the
DNS energy and the first three terms reproduce almost exactly the exact filtered-scale
stress tensor. Although such a numerical check cannot be considered as a proof of
the convergence of the generalized expansion, it certainly supports it.

7. Reversibility of the filtered-scale stress tensor
It has long been recognized that filtering cannot be strictly interpreted as an

average (see, e.g. Germano 1992). However, filtering has often been considered as a
spatial ‘averaging’ procedure and most of the concepts developed for the closure of the
Reynolds-averaged Navier–Stokes (RANS) equations have been applied in the context
of LES modelling. For example, the very popular Smagorinsky (1963) model draws
its inspiration from the turbulent viscosity concept developed in RANS equations
and models the traceless part of the LES stress tensor in terms of an effective
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viscosity. Many constraints (realizability, tensorial invariance, Galilean invariance)
imposed on RANS models have naturally been used for LES models. However, the
decomposition of the total LES stress into two terms (2.1) allows us to introduce
an additional constraint for the filtered-scale stress tensor that is drastically different
from the Reynolds stress tensor: the reversibility. Indeed, the exact expansion derived
in § 3 shows that the filtered-scale stress tensor is invariant under the change of sign
of the LES velocity (2.8). Since the convective nonlinearity term has obviously the
same property, the LES equations can be written as

∂t˜̄ui = −∂jR̃ij − ∂j Ãij − ∂i˜̄p+ ν∇2˜̄ui, (7.1)

with Rij[−˜̄ul] = Rij[˜̄ul] = ˜̄ui˜̄uj +Bij[˜̄ul]. Hence, in the limit of zero molecular viscosity
and if the discretization operator is neglected (D → U), the LES equations can be
rewritten ∂t˜̄ui = fi[˜̄ul] where fi[˜̄ul] = fi[−˜̄ul]. This property implies that, in the limit

of zero molecular viscosity and when the subgrid-scale stress tensor Ãij is neglected,
the evolution of the large-scale velocity field, ˜̄ui, will be purely reversed if its sign is
flipped. Indeed, the LES equations are then invariant for the simultaneous changes
t→ −t and ˜̄ui → −˜̄ui.

We have checked this property numerically by computing the free decay of a

randomly generated isotropic field with ν = 0 and without any model for Ãij .

Different initial velocity fields ˜̄u
0
i have been used in t = 0 (figure 3). The LES

equations are then solved numerically until t = t∗ where the simulation is stopped
and the sign of the velocity field is flipped. In each case, at time t = 2t∗, the initial
condition has been recovered with a flipped sign (˜̄ui(2t

∗) = −˜̄u
0
i ). Two reversible

models B̃M
ij have been used for the filtered-scale stress tensor. First, the dynamic

Smagorinsky model with volume averaging which is shown to be reversible in § 8.
Secondly, the leading term of the expansion (3.11), the so-called tensor diffusivity
model:

B̃M
ij = ∆2( ˜∂kūi ∂kūj). (7.2)

We used a fully de-aliased pseudospectral code with 323 modes. The LES filter is
Gaussian in both cases, with ∆ = ∆grid/

√
2. Hence, at the maximum wavenumber of

the numerical grid, kmax = π/∆grid, the LES filter is G(kmax) = exp (− 1
4
π2) = 0.085;

the grid size thus captures well the range where the filter is significant, while not
over-killing it. Several statistical quantities have been recorded during the simulation.
At t = 2t∗, the even moments of the velocity (such as the energy) are recovered
exactly while the odd moments (such as the skewness) are recovered with a change of
sign. The slight differences in the energy are only due to the explicit time integration;
indeed, the Smagorinsky coefficient is computed dynamically at the beginning of the
timestep, even when time is reversed. Notice that, in the case of the Smagorinsky
model, the second part of the simulation corresponds to effective negative viscosity
everywhere (figure 4).

The influence of the initial condition has been tested. In figure 3, we compare
the results of the free decay of turbulence with zero molecular viscosity for four
different initial conditions with the same spectrum. The first velocity field is generated
according to the procedure proposed by Rogallo (1981). This leads to random phases
and the initial dissipation vanishes (solid lines). Once the velocity is flipped, the
energy increases and reaches exactly the initial level before starting a new decay.
In the second simulation, the same initial field is used in a ten timestep simulation.
After these ten timesteps, the Fourier modes of the velocity are all rescaled so that
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Figure 3. Comparison in the LES energy decay with zero molecular viscosity and without a model
for the subgrid-scale stress tensor Aij for (a) the dynamic Smagorinsky model with volume average
and (b) the tensor diffusivity model. Initial conditions correspond to ———, a randomly generated
isotropic velocity field, and of velocity fields obtained from the successive rescalings to the initial
spectrum after pre-simulations of ten timesteps each (· · · · · ·, 1× 10; – – – –, 2× 10; −.−.−, 4× 10).
In all cases, the velocity is flipped at t = t∗ = 5. Clearly, the initial energy is recovered at t = 2t∗
independently of the initial condition and for both models.

the initial spectrum is recovered. This provides the second initial condition (dotted
lines). Of course, the phases in this second initial condition are not random anymore
and should correspond to a more realistic turbulent field. As a consequence, the
initial dissipation is now non-zero and positive. When the field is flipped, the energy
increases and reaches its initial level at time 2t∗. However, reversibility also implies
that the dissipation, here represented by the transfer of energy from the filtered scales
to the large scales, will be reversed if the sign of the large-scale velocity field is
changed. Indeed, the net energy flux, defined as

ε = −〈B̃ij
˜̄Sij〉, (7.3)

changes sign with the LES velocity. Hence, the dissipation at time t = 2t∗ will be
recovered with the opposite sign and the energy now goes over the initial level before
starting a new decay. This is the signature that ten timesteps were used in a pre-
simulation in order to build up the phases. The same simulation has been redone



Modelling of the subgrid-scale and filtered-scale stress tensors in LES 133

–0.1

0 5 10

Time

0

0.1

C

Figure 4. Evolution of the model coefficient for the simulation using the dynamic Smagorinsky
model. The conditions of the simulation are the same as in figure 3 with the random Gaussian
initial conditions.

with two and four times a ten timestep pre-simulation with rescaling and the effect is
made even clearer.

The fact that the local dissipation defined by (7.3) can become locally negative and
represent local inverse energy flux is well known. Modelling backscatter is thus usually
considered as an important issue in LES (see, e.g. Leith 1990; Mason & Thomson
1992; Carati, Ghosal & Moin 1995; Borue & Orszag 1998; Winckelmans et al. 1998,
2001; Leonard & Winckelmans 1999). The stochastic modelling of backscatter has
been envisaged by most of these authors. It should be noted, however, that the
stochastic representation of the backscatter is only compatible with the modelling
of the scales that are lost owing to discretization (modelling of Aij). Indeed, the
backscatter represented by the filtered-scale stress tensor is expressed exactly in
terms of the LES velocity ˜̄ui and is deterministic in nature. Finally, we remark that,
contrary to the usual belief, even the global effect of the filtered scales cannot always
correspond to dissipation. Indeed, the expansion (3.11) shows that ε[˜̄ul] = −ε[−˜̄ul].
However, for a reasonable large-scale velocity field (corresponding to the filtering
of real turbulence), the net effect when using the leading term in the expansion is
dissipative. The mean model dissipation defined by (7.3) is then (Leonard 1997):

ε ≈ −〈B̃ij
˜̄Sij〉 = −∆2〈( ˜

∂k˜̄ui ∂k˜̄uj)
˜̄Sij〉, (7.4)

which is a measure of the opposite of the skewness of the velocity. This quantity
is known to be negative in real turbulent flows and their DNS. It is also found to
be negative in LES of real turbulent flows. Thus, if the skewness of the large-scale
velocity field remains negative, global dissipation is indeed ensured for the tensor
diffusivity model (7.2). The reversibility of this model for the filtered-scale stress
tensor is thus not problematic since its contribution is generically dissipative for
LES of real turbulence. Right after t∗, the dissipation is negative (figure 5). Indeed,
the transformation ˜̄ui → −˜̄ui modifies an infinite number of velocity moments and
represents a major change in ˜̄ui. In particular, the reversed velocity field now has
positive skewness, a state that would never be observed in LES of real turbulence.

The important property discussed here shows that, for a wide class of filters,
the filtered-scale stress tensor alone will never introduce irreversibility in the LES
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Figure 5. LES dissipation as expressed by the right-hand side of (7.4). The conditions of the
simulations are the same as in figure 3.

equations. This unexpected property also shows that the discretization operator
should not be neglected since it is, with the molecular viscosity, the only source of
irreversibility.

8. Reversibility in existing models
Although the usually accepted phenomenology for the filtered-scale model has

almost always assumed that the small scales induce an irreversible dissipation at the
large-scale level, some reversible models have been proposed and are actually used in
the LES community. We have already mentioned models built from the truncation,
to one or more terms, of the expansion (3.11).

The Bardina’s scale-similarity model TM
ij = uAi u

A
j − uAi u

A
j is another reversible

model. It is interesting to notice that the Bardina model can also be expanded in
terms of the derivatives of uAi . For the one-dimensional case, this expansion is written:

ā b̄− ¯̄a ¯̄b =
∑
rs

drs ∂
r
xā ∂

s
xb̄, (8.1)

where the coefficients drs are derived from a generating function which is reminiscent
of (3.7): H(φ, ψ) = G(i(φ + ψ)) − G(iφ)G(iψ). This property is not interesting in
practice since the Bardina model is obviously already written in terms of ˜̄ui. However,
it can be used to prove that the first term in the expansion of the Bardina model
coincides with the leading term (3.10) in the expansion (3.4). This largely explains
why the Bardina model is also highly correlated with the exact Tij .

We have also mentioned the dynamic Smagorinsky model. Here, we show that the
dynamic procedure systematically yields reversible models when no clipping is used
(including the case of the Smagorinsky model). The dynamic procedure (Germano et
al. 1991; Germano 1992; Lilly 1992; Moin & Jimenéz 1993) is a recently developed
method designed to compute rather than prescribe the unknown coefficient that
appears in the models for the filtered-scale stress tensor. The main ingredient in the
dynamic procedure is an identity derived by Germano (1992) between filtered-scale
stress tensors obtained using the same filter with two different widths: ∆ and α∆
with α > 1 (typically chosen equal to 2). The dynamic procedure has often been
used together with the Smagorinsky model. However, it can be implemented with any
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model. For that reason, we here assume that the model is fully determined by the
large-scale velocity field, up to a multiplicative constant:

τMij = Cmij[ūl], (8.2)

TM
ij = Cmij[̂̄ul], (8.3)

where Tij ≡ ûiuj − ̂̄ui ̂̄uj . Since the discretization operator is usually not introduced
when considering the dynamic procedure, our starting point is here the standard
LES equation (1.2). The filter ̂. . . is the additional test filter applied to the . . .
quantities. It is fully determined by the requirement that the convolution of the LES
filter of width ∆ with the test filter produces the LES filter of width α∆ (Carati &
Vanden Eijnden 1997). Both models for τMij and TM

ij are assumed to have the same

functional dependence on ūi and ̂̄ui. This is a similarity hypothesis. We also define:

Lij = ̂̄uiūj − ̂̄uî̄uj, (8.4)

Mij = m̂ij[ūl]− mij[̂̄ul]. (8.5)

The dynamic procedure is based on satisfying Germano’s identity, (TM
ij −τ̂Mij )−Lij = 0,

in the least-squares sense (Lilly 1992). Defining the error Eij = CMij − Lij , the
minimizing of EijEij leads, for flows with one or more homogeneous direction(s), to
the following prediction for C (Lilly 1992; Ghosal et al. 1995):

C =
〈MijLij〉
〈MklMkl〉 , (8.6)

where the brackets stand for averaging over the homogeneous direction(s).
As expressed by (8.6), the dynamic procedure relates the model coefficient directly

to the large-scale velocity field: C = C[ūl]. The remarkable property of the expres-
sion (8.6) is that the computed C[ūl] always has the same parity as the tensor mij[ūl].
Hence, the total model is always invariant under the change of sign of ūl:

C[ūl]mij[ūl] = C[−ūl]mij[−ūl], (8.7)

satisfying automatically the constraint (2.8). We stress again that this property is
independent of the model used in (8.2) and (8.3). If a model without dynamic
procedure satisfies the constraint (2.8), then its dynamic version will preserve this
property. If, as for the Smagorinsky model, the model with a fixed coefficient is not
invariant under the change ūl ↔ −ūl , then a dynamic version of the model will
restore the invariance. For instance, the dynamic prediction for the effective viscosity
in the Smagorinsky model, νe = C[ūl]∆

2(2S̄kl S̄kl)
1/2, will change sign when reversing

the large-scale velocity field.
This property of the dynamic procedure has caused some troubles in the early

stages of its development. Indeed, when local versions of the dynamic model (with
C = C(r, t)) were developed and tested together with the Smagorinsky model (Ghosal
et al. 1995), it appeared that C was locally very often negative, even though its
space-average was positive. As a consequence, numerical instabilities were observed
in the LES runs. The practitioners solved the problem by introducing a cutoff at
C = 0 (clipping procedure), keeping only the positive values of the Smagorinsky
coefficient, and thus introducing irreversibility. The clipping clearly removes the
possible numerical instabilities. However, it is usually considered as a non-desirable
artifact which is imposed by numerical stability constraints and is not motivated by
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any modelling considerations. This has prompted the development of a new dynamic
model (Ghosal et al. 1995) in which the eddy viscosity is based on the subgrid-scale
energy. In this case, the eddy viscosity can become negative but no clipping is required
since the instabilities are saturated when the subgrid-scale energy vanishes. However,
in its basic formulation and without clipping, the dynamic procedure always leads to
reversible filtered-scale models. Finally, it is important to notice that this assertion is
also true for mixed models of the form:

τMij = nij[ūl] + Cmij[ūl], (8.8)

TM
ij = nij[̂̄ul] + Cmij[̂̄ul], (8.9)

where the first term, nij , is reversible. Example of such models are the mixed model:
‘Bardina model + dynamic Smagorinsky term’ (Zang, Street & Koseff 1993), or the
newly developed mixed model: ‘tensor diffusivity model + dynamic Smagorinsky term’
(Vreman et al. 1996, 1997; Winckelmans et al. 1998). In these mixed approaches, the
first term (Bardina model or truncation of the exact expansion) represents the filtered-
scale stress tensor, while the second term models the subgrid-scale stress tensor. In
these mixed models, defining

Pij = Lij + ( ̂nij[ūl]− nij[̂̄ul]), (8.10)

the dynamic procedure leads to

C =
〈MijPij〉
〈MklMkl〉 . (8.11)

Again, the total model is invariant when changing the sign of the large-scale velocity.
As discussed in § 4, the additional eddy viscosity should be understood as a model
for the subgrid-scale stress tensor Ãij . The fact that this term also appears to be
reversible when computed dynamically should be seen as a pathology of the dynamic
procedure which does not influence the results when volume or surface averaging can
be used.

9. Conclusion
A decomposition of the total additional stress that appears in the LES equations

into a term mainly due to discretization and a term mainly due to filtering has been
proposed. The discretization operator is usually not precisely determined and no
exact result can be derived for the modelling of the related subgrid-scale stress tensor.
However, the discretization is generically responsible for some loss of information
and irreversible models such as the eddy viscosity term are expected to give a
reasonable picture of its effect on the LES field. On the contrary, the filter can be
defined without ambiguity. It has been proved that the related filtered-scale stress
tensor can be expressed exactly in terms of the LES field for a wide class of filters.
This exact expression shows that the filtering is generically not responsible for any
information loss and that, consequently, the filtered-scales stress does not introduce
any irreversibility effect in the LES equations. The combination of the two terms
strongly motivates the modelling of the total LES stress tensor in terms of mixed
models in which the reversible part can be derived from the expansion proposed in § 3.

It must be acknowledged here that the derivation of the mathematical expansion of
the filtered-scale stress tensor is not valid for completely general filters. Also, the use
of the Fourier representation for proving the expansion assumes homogeneity. The
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derivation of the expansion proposed in § 3 is thus strictly valid only for homogeneous
flows. However, these assumptions should not lead to the conclusion that these
results have no relevance for moderately inhomogeneous flows (requiring moderately
inhomogeneous filters). In particular, the effect of a filter that does not remove
information from the field but only attenuates the energy contained in the small-scale
range should be similar in homogeneous and inhomogeneous flows. In this last case,
it should still be possible to derive a reconstruction procedure, even if it might be
appreciably different from the exact expansion proposed in § 3. Also, the filtered-scale
stress tensor which has been shown to lead to reversible dynamics for homogeneous
filters is not expected to lead to purely irreversible effects when slightly inhomogeneous
filters are used. For instance, the mixed model (tensor-diffusivity model supplemented
by a dynamic Smagorinsky term) has been used, with good success, in LES of
channel flow using an explicit Gaussian filter that is homogeneous in the planes
parallel to the wall but not in the wall normal direction. Also, the introduction ab
initio of two operators – discretization and filtering – for defining the LES field makes
the assumption on the filter not very restrictive. Indeed, the combination of a smooth
filter G and a very general discretization operator D should cover a wide range of
practical LES cases.

It must be stressed that for any practical application, both operators G and D are
essential. The filtering allows the influence of the small scales to diminish, but does
not remove any information for the velocity field. Alone, it will only correspond to
a change of basis in which the LES should be exactly equivalent to the DNS. The
discretization is precisely the operation which removes some information and which
makes the LES less time- and memory-consuming than the DNS. However, alone
the discretization would remove scales that might contain an appreciable amount of
energy and would require a very good model to guarantee the success of the LES. The
combination of two operators allows for time and memory savings in passing from the
DNS to the LES and implies that the discretization only affects a small fraction of the
energy contained in the filtered field. For the 1283 DNS, the reduction to a 323 LES can
be obtained from a discretization operator given by a sharp cutoff at k = 16. For the
fields used in the a priori tests, this operation only cuts 2% of the total energy whereas
the filtering removes between 5 and 50% of the energy, depending on the filter width.

Finally, we conclude by mentioning two other approaches in which the LES stress
tensor is reconstructed instead of being purely modelled. Domaradski & Saiki (1997)
recently proposed a technique in which the unresolved velocity uC is reconstructed by
using the nonlinear interaction term in the resolved Navier–Stokes equations. Closer
to the present approach, the iterative deconvolution procedure used by Stolz & Adams
(1999) leads to an approximate reconstruction of the filtered-scale stress tensor which
also assumes that the filter is invertible within the resolution domain of the LES.

D. C. is ‘Chercheur Qualifié du Fonds National de la Recherche Scientifique’,
Belgium. This work has been supported by the ‘convention FRFC 2.4563.98’ and by
a NATO Collaborative Research Grant CRG 970213.
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